The wave function is
"\u03c8(x)=Ae^{-x}(1-e^{ -x})."Determine the normalization constant A:
"1=\\int^{+\\infty}_{-\\infty}\\psi^*(x)\\psi(x)dx,\\\\\n\\space\\\\\n1=\\int^{+\\infty}_{0}A^2e^{-2x}(1-e^{-x})2\\space dx,\\\\\n\\space\\\\\n1=A^2\\bigg(\\frac{1}{12}\\bigg),\\\\\nA^2=12.\\space\\\\" Determine the expectation value of x:
"<\\hat{A}>=\\int^{+\\infty}_{-\\infty}\\psi^*(x)\\hat{A}\\psi(x)dx,\\\\\n\\space\\\\\n<x>=12\\int^{+\\infty}_{0}xe^{-2x}(1-e^{-x})2\\space dx,\\\\\n\\space\\\\<x>=\\frac{13}{12}."
Comments
Leave a comment