In quantum case "E_n=\\Big(n+\\frac{1}{2}\\Big)\\hbar\\omega"
In classic case "E=kx^2\/2=m\\omega^2A^2\/2"
Let's find the amplitude "A" of oscillations for a classical oscillator with energy equal to the energy of a quantum oscillator in the quantum state "n".
We obtain "E_n=m\\omega^2A^2_n\/2 \\rightsquigarrow A_n=\\sqrt{(2n+1)\\frac{\\hbar}{m\\omega}}"
In quantum case
"\\psi_n(x)=\\frac{1}{\\sqrt{2^n n!}}\\cdot (\\frac{m\\omega }{\\pi \\hbar })^{1\/4}\\cdot e^{-\\frac{m\\omega x^2}{2\\hbar}}\\cdot H_n(\\sqrt{\\frac{m\\omega }{\\hbar }} x)"
where "H_n(y)" are Hermite polynomials, "H_0(y)=1" .
We want to compute the probability that the coordinate of a linear harmonic oscillator in its ground state (i.e. "n=0") has value greater than ''classic zone'' "x\\in(-A,A)", i.e.
Or approximately "7.87 \\%"
Comments
Leave a comment