Wave function of particle in infinite square well potential is "\\psi_n(x) = \\sqrt{\\frac{2}{L}} \\sin \\left( \\frac{ \\pi n}{L} x\\right)".
Hence, for "n=2":
"p(0 \\leq x \\leq L\/3) = \\int_0^{L\/3} |\\psi_2(x)|^2 dx = \\frac{2}{L}\\int_0^{L\/3} \\sin^2 {\\frac{2 \\pi}{L} x} dx = \\frac{1}{3} + \\frac{\\sqrt{3}}{8 \\pi}",
"p(L\/3 \\leq x \\leq 2L\/3) = \\int_{L\/3}^{2L\/3} |\\psi_2(x)|^2 dx = \\frac{2}{L}\\int_{L\/3}^{2L\/3} \\sin^2 {\\frac{2 \\pi}{L} x} dx = \\frac{1}{3} - \\frac{\\sqrt{3}}{4 \\pi}",
"p(2L\/3 \\leq x \\leq L) = \\int_{2L\/3}^L |\\psi_2(x)|^2 dx = \\frac{2}{L}\\int_{2 L\/3}^{L} \\sin^2 {\\frac{2 \\pi}{L} x} dx = \\frac{1}{3} + \\frac{\\sqrt{3}}{8 \\pi}".
The sum of probabilities is one, because terms with "\\sqrt{3}" cancel out, and one thirds sum to one.
Comments
Leave a comment