Let us assume the target is at very large distance more precisely at infinity and is at rest.
Generally, the force acting between target mass and alpha particle is Columb 's force(distance dependent) that
"\\overrightarrow{F}=f(r)\\overrightarrow{r}"where,
"f(r)=\\frac{1}{4\\pi\\epsilon_0}\\frac{q_{\\alpha}q_{m}}{r^3}"Now, we have to show that
"\\frac{d}{dt}\\overrightarrow{L}=0"Thus,
"\\frac{d}{dt}\\overrightarrow{L}=\\frac{d}{dt}(\\overrightarrow{r}\\times \\overrightarrow{p}) \\\\\n\\implies \\frac{d}{dt}(\\overrightarrow{r})\\times \\overrightarrow{p}+\\overrightarrow{r} \\times\\frac{d}{dt}(\\overrightarrow{p})"But note that
"\\frac{d}{dt}(\\overrightarrow{r})\\times \\overrightarrow{p}=m(\\dot{\\overrightarrow{r}}\\times \\dot{\\overrightarrow{r}})=0"Now, from Newton's second law of motion , we get
"\\frac{d}{dt}(\\overrightarrow{p})=f(r)\\overrightarrow{r}"Thus,
"\\overrightarrow{r} \\times\\frac{d}{dt}(\\overrightarrow{p})=f(r)(\\overrightarrow{r} \\times \\overrightarrow{r} )=0"On combining, the above two fact, we get,
"\\dot{\\overrightarrow{L}}=0"Thus, momentum is conserved in entire path and it is "||\\dot{\\overrightarrow{L}}||=mv_0b"
Comments
Leave a comment