We may calculate de Broglie wavelength as
"\\lambda = \\dfrac{h}{p} = \\dfrac{h}{mv}." The kinetic energy is, on the one hand, "E_k = \\dfrac{mv^2}{2}" and, on the other hand, "E_k = q_e \\Delta\\varphi."
Therefore, "\\lambda =\\dfrac{h}{mv} = \\dfrac{h}{\\sqrt{2q_em\\Delta\\varphi}} = \\dfrac{6.6\\cdot10^{-34}\\,\\mathrm{J\\cdot s}}{\\sqrt{2\\cdot 9.1\\cdot10^{-31}\\,\\mathrm{kg}\\cdot1.6\\cdot10^{-19}\\,\\mathrm{C}\\cdot 150\\,\\mathrm{V}}} = 10^{-10}\\,\\mathrm{m} = 1" Å.
Comments
Leave a comment