We can solve the Schrodinger problem for a particle in 2 - dimension hole:
"\\widehat H \\Psi_{n,m} = E_{n,m}\\Psi_{n,m}"
where :
"\\widehat H \\rightarrow -\\frac{\\hbar^{2}}{2m}\\left(\\frac{\\partial^2}{\\partial x^2} + \\frac{\\partial^2}{\\partial y^2}\\right) + U(x,y)"
if we solve it for a hole with rectangle as a shape, then we get the level of energy fo such system:
"E_{n,m} = \\frac{\\pi^2\\hbar^2}{2m}\\left(\\frac{n^2}{a^2} + \\frac{m^2}{b^2}\\right)"
n,m - quantum numbers
a,b - sides of the rectangle
Comments
Leave a comment