Answer
n-th state of one dim linear harmonic oscilator is given by
"|n>=(\\frac{\\alpha}{2^n n! \\sqrt{\\pi}}) ^{1\/2}e^{-\\alpha^2 x^2\/2} H_n(\\alpha x)"
Now
Expectation value of momentum^4
"<p^4>=\\frac{<n|p^4n>}{<n|n>}"
Putting
"P=\\frac{-i\\hbar}{2m}" And state n
So expectation value is
"<p^4>=(\\frac{\\hbar m\\omega}{2}) ^2(6n^2+6n+3)"
Comments
Leave a comment