Show that < 𝑥𝑝 > − < 𝑝𝑥 > = 𝑖ħ for the ground state wave function of the Quantum
Harmonic Oscillator (QHO)
The QHO ground state wave function is given by "\\psi(x) = (\\frac{m\\omega}{\\pi \\hbar})^{1\/4} e^{-\\frac{m \\omega x^2}{2\\hbar}}". In coordinate representation, "\\hat{x} = x, \\hat{p} =- i\\hbar \\frac{\\partial}{\\partial x}" and thus we find :
"<\\hat x \\hat p >_\\psi = \\int_{-\\infty}^{+\\infty} x\\cdot (i\\hbar\\frac{m\\omega x}{\\hbar})\\cdot \\psi^2(x) dx", applying the integration by parts ("u = x, dv = im\\omega x \\psi^2 dx") we find "<\\hat x \\hat p >_\\psi = [\\frac{1}{2}x\\psi^2]^{+\\infty}_{-\\infty} + \\frac{1}{2}i\\hbar \\int \\psi^2 dx =\\frac{ i\\hbar}{2}" as "\\psi" is a normalised wave function.
Now we calculate "<\\hat p \\hat x>_\\psi = -i\\hbar \\int (\\psi^2+x\\psi \\psi')dx". The integral "-i\\hbar \\int \\psi^2dx =-i\\hbar" is given by the normalisation of "\\psi". The second integral was calculated previously. Thus we find "<\\hat p \\hat x>_\\psi = -i\\hbar \/2" .
Thus "<xp-px>_\\psi = i\\hbar" which is coherent with the fact that "[x,p]=i\\hbar \\cdot Id" and thus "<[x,p]>_\\psi = i\\hbar" for any normalised wave function "\\psi".
Comments
Leave a comment