The kinetic energy of an electron is equal to its rest mass energy. Determine the
magnitude of its velocity and momentum.
"E_0=m_0c^2=9.1\\cdot10^{-31}\\cdot(3\\cdot10^{8})^2=819\\cdot10^{-16}\\ (J)\\approx512\\ (keV)"
"KE=m_0c^2\\bigg(\\frac{1}{\\sqrt{1-\\frac{v^2}{c^2}}}-1\\bigg)" , "KE=E_0"
"m_0c^2=m_0c^2\\bigg(\\frac{1}{\\sqrt{1-\\frac{v^2}{c^2}}}-1\\bigg)\\to 1=\\frac{1}{\\sqrt{1-\\frac{v^2}{c^2}}}-1"
"\\sqrt{1-\\frac{v^2}{c^2}}=\\frac{1}{2}\\to1-\\frac{v^2}{c^2}=\\frac{1}{4}\\to v=\\frac{\\sqrt3}{2}c" . Answer
Total energy
"E=m_0c^2\/\\sqrt{1-\\frac{v^2}{c^2}}=512\/\\sqrt{1-\\frac{(\\frac{\\sqrt3}{2}c)^2}{c^2}}=1024\\ (keV)"
Momentum
"E^2=p^2c^2+(m_0c^2)^2\\to p=\\sqrt{(E^2-(m_0c^2)^2)\/c^2}="
"=\\sqrt{(1024^2-(512)^2)\/c^2}=887\\ (keV\/c)" . Answer
Comments
Leave a comment