3) (a) Suppose, I have normalized the wave function at some point of time. The wave function evolves with time according to time dependent Schrodinger equation. How do
I know that the wave function remains normalized after some time?
[Hint: Show that (x, t)|²dx = 0]
(b) Show that
d(p)
dt
=
dx
i.e. expectation values follow Newton's law.
Suppose we have a normalized wave function at time t = 0
"\\dfrac{d}{dt}\\int_{-\\infin}^{\\infin}|\\Psi(x,t)|^2dx=\\int_{-\\infin}^{\\infin}\\dfrac{\\partial}{\\partial t}|\\Psi(x,t)|^2dx"
Writing Schrodinger equation as
"\\dfrac{d\\Psi}{dt}=\\dfrac{i\\hbar}{2m}\\dfrac{\\partial^2\\Psi}{\\partial x^2}-\\dfrac{i}{\\hbar}V\\Psi"
Similarly,
"\\dfrac{\\partial\\Psi^*}{\\partial t}=-\\dfrac{i\\hbar}{2m}\\dfrac{\\partial^2\\Psi}{\\partial x^2}+\\dfrac{i}{\\hbar}V\\Psi"
Substituting in the first equation and rearranging, we get,
"\\Rightarrow \\dfrac{\\partial|\\Psi|^2}{\\partial t}=\\dfrac{i\\hbar}{2m}\\bigg(\\Psi^*\\dfrac{\\partial^2\\Psi}{\\partial x^2}-\\Psi\\dfrac{\\partial^2\\Psi^*}{\\partial x^2}\\bigg)"
"\\Rightarrow \\dfrac{\\partial|\\Psi|^2}{\\partial t}=\\dfrac{\\partial}{\\partial x}\\bigg[\\dfrac{i\\hbar}{2m}\\bigg(\\Psi^*\\dfrac{\\partial^2\\Psi}{\\partial x^2}-\\Psi\\dfrac{\\partial^2\\Psi^*}{\\partial x^2}\\bigg)\\bigg]"
"\\Rightarrow \\dfrac{d}{dt}\\int_{-\\infin}^{\\infin}|\\Psi(x,t)|^2dx=\\dfrac{i\\hbar}{2m}\\bigg(\\Psi^*\\dfrac{\\partial^2\\Psi}{\\partial x^2}-\\Psi\\dfrac{\\partial^2\\Psi^*}{\\partial x^2}\\bigg)_{-\\infin}^{\\infin}"
Since, "\\Psi(x,t)\\longrightarrow0" as "x\\longrightarrow\\infin" for "\\Psi(x,t)" to be non normalizable,
it follows
"\\dfrac{d}{dt}\\int_{-\\infin}^{\\infin}|\\Psi(x,t)|^2dx=0"
Comments
Leave a comment