Show that
𝑑⟨𝑝⟩
𝑑𝑡
= ⟨−
𝜕𝑉
𝜕𝑥⟩
i.e. expectation values follow Newton’s law.
"\\frac{d}{dt}\\int |\\psi(x,t)|^2dx = \\int(\\frac{\\partial}{\\partial t}|\\psi(x,t)|^2)dx"
Now we use that "|\\psi|^2=\\psi \\bar{\\psi}" :
"\\int \\frac{\\partial}{\\partial t}(\\psi\\bar{\\psi})dx =\\int ((\\frac{\\partial}{\\partial t}\\psi)\\bar{\\psi}+(\\frac{\\partial}{\\partial t}\\bar{\\psi})\\psi)dx"
Now we will use the fact that "\\psi" satisfies the Schrodinger equation
"\\hat{H}\\psi = i\\hbar\\partial_t \\psi"
And as hamoltonian is a real operator
"\\bar{\\hat{H}}=\\hat{H}" and thus
"\\hat H \\bar{\\psi}=-i\\hbar \\partial_t \\bar{\\psi}"
Using these expressions gives us
"\\int \\left((\\frac{-i}{\\hbar}\\hat H\\psi)\\bar{\\psi}+(\\frac{i}{\\hbar}\\hat H \\bar\\psi)\\psi\\right)dx"
But we know that as "\\hat H" is a hermitian operator, we have "\\int \\bar \\psi \\hat H \\psi dx = \\int\\psi\\hat H \\bar \\psi dx" and thus the integral is zero, "\\frac{d}{dt}\\int |\\psi(x,t)|^2dx=0", "\\int |\\psi(x,t)|^2dx=||\\psi||^2=const" and as initially it is 1, it is always normalized.
"<p>=\\int \\bar\\psi (-i\\hbar\\frac{\\partial}{\\partial x})\\psi dx"
Deriving with respect to time gives us
"-i\\hbar \\left( \\int(\\partial_t\\bar \\psi)(\\partial_x\\psi)dx+\\int(\\bar\\psi) (\\partial_t\\partial_x\\psi) dx \\right)"
As previously, we will use the Schrodinger equation to replace "\\partial \\psi" :
"-i\\hbar\\left( \\int\\frac{i}{\\hbar}(\\hat H \\bar{\\psi})(\\partial_x\\psi)dx+\\int(\\bar\\psi) \\frac{-i}{\\hbar}(\\partial_x\\hat H \\psi) \\right)"
Now, using that hamiltonian is a hermitian operator we can write it as
"\\int \\bar \\psi (\\hat H \\partial_x\\psi - \\partial_x \\hat H \\psi)dx"
Now using that "\\hat H = -\\frac{\\hbar^2}{2m}\\partial_{xx}+V" we find
"\\int \\bar\\psi (-\\frac{\\hbar^2}{2m}\\partial_{xxx}\\psi +V\\partial_x \\psi +\\frac{\\hbar^2}{2m}\\partial_{xxx}\\psi-(\\partial_xV)\\psi -V\\partial_x\\psi)dx"
"\\int \\bar\\psi (-\\partial_xV)\\psi dx=<-\\frac{\\partial}{\\partial x}V>"
"\\frac{d}{dt}<p>=<-\\frac{\\partial V}{\\partial x}>"
Comments
excellent job
Leave a comment