A particle of mass m and zero energy has a wave function Ψ (x)= Nx exp -x^2/16 , where
N is a constant. Determine the potential energy V (x) for the particle.
"\u03a8 (x)= Nx e^{ -x^2\/16}"
In order to find the energy potential in which the particle is moving, we must insert
"\\Psi(x,t)" in Schrodinger Equation,
"i\\hbar\\dfrac{\\partial \\Psi}{\\partial t}=-\\dfrac{\\hbar^2}{2m}\\dfrac{\\partial^2 \\Psi}{\\partial x^2}+V\\Psi"
"\\dfrac{\\partial \\Psi}{\\partial t}=0"
"\\dfrac{\\partial \\Psi}{\\partial x}=Ne^{-x^2\/16}+Nxe^{-x^2\/16}\\times\\dfrac{-2x}{16}"
"\\dfrac{\\partial \\Psi}{\\partial x}=Ne^{-x^2\/16}\\bigg(1-\\dfrac{x^2}{8}\\bigg)"
"\\dfrac{\\partial^2 \\Psi}{\\partial x^2}=Ne^{-x^2\/16}\\dfrac{x}{4}+N\\dfrac{x}{8}e^{-x^2\/16}\\bigg(1-\\dfrac{x^2}{8}\\bigg)"
"\\dfrac{\\partial^2 \\Psi}{\\partial x^2}=\\dfrac{\\Psi(x)}{4}+\\dfrac{\\Psi(x)}{8}\\bigg(1-\\dfrac{x^2}{8}\\bigg)"
"\\dfrac{\\partial^2 \\Psi}{\\partial x^2}=\\dfrac{\\Psi(x)}{32}({12-x^2})"
Substituting these values in Schrodinger equation
"V\\Psi(x)=\\dfrac{\\hbar^2}{2m}\\dfrac{\\Psi(x)}{32}({12-x^2})"
"V(x)=\\dfrac{\\hbar^2}{64m}({12-x^2})"
Comments
Leave a comment