The formula (A∨B) ∧ (¬B ∨C) simplifies down to which of the following when using Boolean algebra?
A. A ∧ C
B. A ∧ B ∨ C
C. A ∨ C
D. B
E. A ∧ ¬B ∨ C
Prove that none of the variants is correct:
"A:\\\\A=1,B=0,C=0:\\left( A\\lor B \\right) \\land \\left( \\lnot B\\lor C \\right) =1,A\\land C=0\\\\B:\\\\A=1,B=1,C=0:\\left( A\\lor B \\right) \\land \\left( \\lnot B\\lor C \\right) =0,A\\land B\\lor C=1\\\\C:\\\\A=0,B=0,C=1:\\left( A\\lor B \\right) \\land \\left( \\lnot B\\lor C \\right) =0,A\\lor C=1\\\\D:\\\\A=1,B=0,C=0:\\left( A\\lor B \\right) \\land \\left( \\lnot B\\lor C \\right) =1,B=0\\\\E:\\\\A=0,B=0,C=1:\\left( A\\lor B \\right) \\land \\left( \\lnot B\\lor C \\right) =0,A\\land \\lnot B\\lor C=1"
Comments
Leave a comment