The bias for a double precision floating point representation = 1023
The general representation formula is:
(-1)^s * (1+mantissa) * 2^(Exponent – 1023)
An invisible leading bit (i.e. it is not actually stored) with value 1.0 is placed in front, then bit 51 has a value of 1/2, bit 50 has value 1/4 etc. As a result, the mantissa has a value between 1.0 and 2
Sign
bit Exponent Mantissa
-----------------------------------------------------------------------------------------------------------------------------------------------------
63 62 52 51 0
------------------------------------------------------------------------------------------------------------------------------------------------------
1 100 0000 0010 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
------------------------------------------------------------------------------------------------------------------------------------------------------
(-1)^1 2^3 1 + 1/2 + 1/4 + 1/8
-1 * 8 * 1.875 =-15
Comments
Leave a comment