In a university, there is a certain system of credits. Each of student is given a ‘credit limit’ which specifies the maximum credits of a subject they can take. A student can take any number of subjects which are under his/her credit limit.
There are N students and K subjects.Each subject has a specified number of credits .when student choose a subject ,it becomes a (student,subject)pair.
Find the maximum number of possible(subject,student)pairs for the given credit limits and subject credit requirements.
Input1:K denoting the number of subjects
Input2:An array of K elements each denoting the credits to take a subject
Input3:N denoting the number of students
Input4:An array of N elements each denoting the credit limit of a student.
Output:Your should return the maximumnumber of possible required pairs.
Example1:
Inpput1:3
Input2:{44,45,56,39,2,6,17,75}
Input3:1
Input4:{54}
Output:6
class Student
{
public int CreditLimit { get; set; }
public Student(int limit)
{
CreditLimit = limit;
}
}
class Subject
{
public int MaximumCredits { get; set; }
public Subject(int limit)
{
MaximumCredits = limit;
}
}
static void Main()
{
Console.Write("Enter the number of subject: ");
int n = int.Parse(Console.ReadLine());
List<Subject> subjects = new List<Subject>();
for (int i = 0; i < n; i++)
{
Console.Write($"Enter the maximum number of credits for {i+1} subject: ");
subjects.Add(new Subject(int.Parse(Console.ReadLine())));
}
Console.Write("Enter the number of student: ");
n = int.Parse(Console.ReadLine());
List<Student> students = new List<Student>();
for (int i = 0; i < n; i++)
{
Console.Write($"Enter the credit limit for {i + 1} student: ");
students.Add(new Student(int.Parse(Console.ReadLine())));
}
MaxSubject(students, subjects);
Console.ReadKey();
}
static void MaxSubject(List<Student> students, List<Subject> subjects)
{
for (int i = 0; i < students.Count; i++)
{
int maxCount = 0;
for (int j = 0; j < subjects.Count; j++)
{
if (students[i].CreditLimit > subjects[j].MaximumCredits)
maxCount++;
}
Console.WriteLine($"For the {i + 1} student, the maximum number of subjects is {maxCount}");
}
}
Comments
Leave a comment