A rain drop of mass 3gm starts to fall from rest under the effect of gravity from a height of
100m. There is an air drag acting on the rain drop, the drag force is given by the equation,
Fd = bv.
Here, b = a × 10-3kgs-1s
a = 2
(a) Determine the governing differential of the system.
(b) Build a SIMULINK model of the system using transfer functions.
(c) Show velocity vs time graph with and without the effect of air drag on the same
plot.
(d) Show height vs time graph with and without the effect of air drag on the same
plot.
(e) From your graphs, determine the approximate time required for the rain drop to
reach the ground.
close all,
clear all,
clc,
H = 100;
g = 9.8;
Time = sqrt(2*H/g);
fprintf('\n\tTime = ',Time);
t = 0:0.01:Time;
h = [];
v = [];
for r=1:length(t)
h(r) = 100-(0.5*g*t(r)*t(r));
v(r) = sqrt(2*g*h(r));
end
scrsz = get(0,'ScreenSize');
Dim=0;
figure('Position',[scrsz(1)+Dim, scrsz(2)+Dim,scrsz(3)-20,scrsz(4)-100]);
subplot(1,2,1);
plot(t,v,'r');
grid on,
xlabel('--- Time(t) --->');
ylabel('--- Velocity --->');
title('Plot: Velocity Vs Time','FontSize',20);
subplot(1,2,2);
plot(t,h,'r');
grid on,
xlabel('--- Time(t) --->');
ylabel('--- Height --->');
title('Plot: Height Vs Time','FontSize',20);
Comments
Leave a comment