Upon acquiring various amino acid units in your laboratory, you are able to duplicate the machinery that results in protein synthesis. Which of the following would you not expect during the polymerization of amino acids into proteins?
I would you not expect during the polymerization of amino acids into proteins because
Ribosome structure: The large ribosomal subunit sits atop the small ribosomal subunit and the mRNA is threaded through a groove near the interface of the two subunits. The intact ribosome has three tRNA binding sites: the A site for incoming aminoacyl-tRNAs; the P site for the peptidyl-tRNA carrying the growing polypeptide chain; and the E site where empty tRNAs exit (not shown in this figure but immediately adjacent to the P site.)
Each mRNA molecule is simultaneously translated by many ribosomes, all reading the mRNA from 5′ to 3′ and synthesizing the polypeptide from the N terminus to the C terminus. The complete mRNA/poly-ribosome structure is called a polysome.
The tRNA molecules are transcribed by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Specific tRNAs bind to codons on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid bound in by a tRNA.)
The transfer RNAs (tRNAs) are structural RNA molecules. In eukaryotes, tRNA mole are transcribed from tRNA genes by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Serving as adaptors, specific tRNAs bind to sequences on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid brought in by a tRNA.) Therefore, tRNAs are the molecules that actually “translate” the language of RNA into the language of proteins.
Of the 64 possible mRNA codons (triplet combinations of A, U, G, and C) three specify the termination of protein synthesis and 61 specify the addition of amino acids to the polypeptide chain. Of the three termination codons, one (UGA) can also be used to encode the 21st amino acid, selenocysteine, but only if the mRNA contains a specific sequence of nucleotides known as a SECIS sequence. Of the 61 non-termination codons, one codon (AUG) also encodes the initiation of translation.
Each tRNA polynucleotide chain folds up so that some internal sections basepair with other internal sections. If just diagrammed in two dimensions, the regions where basepairing occurs are called stems, and the regions where no basepairs form are called loops, and the entire pattern of stems and loops that forms for a tRNA is called the “cloverleaf” structure. All tRNAs fold into very similar cloverleaf structures of four major stems and three major loops.
Comments
Leave a comment