Answer to Question #347867 in Analytic Geometry for Stella

Question #347867

Prove that |a+b| - |a-b| ≤ 2|b|.


1
Expert's answer
2022-06-08T17:39:58-0400

Consider paralelogram "ABCD"

"\\overrightarrow{AB}=\\vec a, \\overrightarrow{AD}=\\vec b"

Then


"\\overrightarrow{AO}=\\dfrac{1}{2}(\\vec{a}+\\vec {b}), \\overrightarrow{DO}=\\dfrac{1}{2}(\\vec{a}-\\vec {b})"

The sum of any two sides of a triangle is greater than or equal to the third side.


"\\triangle AOD:AD+OD\\ge AO"

Then


"|\\vec{b}|\\ge |\\dfrac{1}{2}(\\vec{a}+\\vec {b})|-|\\dfrac{1}{2}(\\vec{a}-\\vec {b})|"

"|\\vec{a}+\\vec {b}|-|\\vec{a}-\\vec {b}|\\le 2|\\vec{b}|"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS