Answer to Question #349053 in Analytic Geometry for Mapula Advice

Question #349053



Question text


An aeroplane flies at a ground velocity (i.e. velocity relative to



the ground) of 300 km/h N 30o W, in a wind blowing at a velocity



of 50 km/h N 20o E. What is the velocity (speed and direction)



of the plane relative to the ground? (Use a calculator and round the speed



to the nearest km/h, and the corresponding angle to the nearest degree.)


1
Expert's answer
2022-06-09T14:05:38-0400

a.


"\\vec{v}=300\\cos120\\degree \\vec{i}+300\\sin120\\degree\\vec{j}"

"\\vec{u}=50\\cos70\\degree \\vec{i}+50\\sin70\\degree\\vec{j}"


"\\vec{v}_{res}=\\vec{v}+\\vec{u}"


"=(300\\cos120\\degree+50\\cos70\\degree )\\vec{i}"



"+(300\\sin120\\degree+50\\sin70\\degree)\\vec{j}"

"\\approx-132.9\\vec{i}+306.8\\vec{j}"


"|\\vec{v}_{res}|\\approx\\sqrt{(-132.9)^2+(306.8)^2}\\approx334.35(km\/h)"



b.


"\\tan \\theta=\\dfrac{306.8}{-132.9}=-2.3085"




"\\theta=\\tan^{-1}(-2.3085)+180\\degree\\approx113.42\\degree"



An aeroplane travels in the direction N "23.42\\degree"W at "334.35" km/h.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS