If y=sin(2x)/x and x =Pi and ex=.25 find the differentaite
Solution;
Given;
x=π
"e^x=0.25"
"y=\\frac{sin(2x)}{x}"
"ln(e^x)=ln(0.25)"
"x=ln(0.25)"
Apply quotient rule;
"\\frac{dy}{dx}=\\frac{2xcos(2x)-sin(2x)}{x^2}"
At x=π;
"\\frac{dy}{dx}=\\frac{2\u03c0cos(2\u03c0)-sin(2\u03c0)}{\u03c0^2}" ="\\frac{2\u03c0-0}{\u03c0^2}=\\frac2\u03c0"
At x=ln(0.25)
"\\frac{dy}{dx}=\\frac{2ln0.25cos(2\u00d7ln0.25)-sin(2\u00d7ln0.25)}{(ln0.25)^2}"
"\\frac{dy}{dx}=-1.415"
Comments
Leave a comment