Answer to Question #281792 in Calculus for chaitu

Question #281792

Test the convergence of ∑︁∞

n=1

[︂

n!2n

2

n

]︂

.


Ans: ∑︁un Converges

25. Test the convergence of ∑︁∞

n=1

[︂

n

3 + 1

2

n + 1]︂

.


Ans: ∑︁un Converges

Hint: Use vn as

1

√n

.


26. Test the convergence of

1

2 · 3 · 4

+

2

3 · 4 · 5

+

3

4 · 5 · 6

+

4

5 · 6 · 7

+ · · · .


Ans: ∑︁un Converges

Hint: Use vn as

1

n2

.


27. Test the convergence of

2 − 1

3

3 − 1

+

3 − 1

4

3 − 1

+

4 − 1

5

3 − 1

+ · · · .


Ans: ∑︁un Converges

Hint: Use vn as

1

n

5

2

.


28. Test the convergence of

2

1

p +

3

2

p +

4

3

p + · · · .


Ans: ∑︁un Converges if p > 2 and ∑︁un Diverges if p ≤ 2

Hint: Use vn as

1

n

p−1

.


1
Expert's answer
2021-12-29T12:58:35-0500

24.

"\u2211\ufe01^\u221e_{n=1}\\frac{(n!)^2}{n^{2n}}"


"\\displaystyle \\lim_{n\\to \\infin}\\frac{{n!}}{n^n}=\\displaystyle \\lim_{n\\to \\infin}\\frac{{1\\cdot2\\cdot3...(n-1)n}}{n\\cdot n...n}=0"


so,

"\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{u_n}=\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{\\frac{(n!)^2}{n^{2n}}}=0<1"


so, series converges


25.

"\u2211\ufe01^\u221e_{n=1}\\frac{n^3+1}{2^n+1}"


using L'Hopital's rule:

"\\displaystyle \\lim_{n\\to \\infin}\\frac{n^3+1}{2^{n}+1}=\\displaystyle \\lim_{n\\to \\infin}\\frac{6}{2^nln^32}=0"


then:

"\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{u_n}=\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{\\frac{n^3+1}{2^{n}+1}}=0<1"


so, series converges


26.

"\\frac{1}{2 \u00b7 3 \u00b7 4}+\\frac{2}{3 \u00b7 4 \u00b7 5}+\\frac{3}{4 \u00b7 5 \u00b7 6}+\\frac{4}{5 \u00b7 6 \u00b7 7}+...=\\sum_{n=1}^{\\infin}\\frac{n}{(n+1)(n+2)(n+3)}"


since "\\frac{n}{(n+1)(n+2)(n+3)}<\\frac{1}{n^2}" and series "\\sum \\frac{1}{n^2}" converges, then series


"\\sum_{n=1}^{\\infin}\\frac{n}{(n+1)(n+2)(n+3)}" converges as well


27.

"\\frac{\\sqrt 2-1}{3^3-1}+\\frac{\\sqrt 3-1}{4^3-1}+\\frac{\\sqrt 4-1}{5^3-1}+...=\\sum^{\\infin}_{n=1}\\frac{\\sqrt n-1}{(n+1)^3-1}"


"u_n=\\frac{\\sqrt n-1}{(n+1)^3-1},v_n=\\frac{1}{n^{5\/2}}"


"\\displaystyle \\lim_{n\\to \\infin}(u_n\/v_n)=1\\neq 0"


we know that series "\\sum^{\\infin}_{n=1}\\frac{1}{n^{5\/2}}" converges, so series "\\sum^{\\infin}_{n=1}\\frac{\\sqrt n-1}{(n+1)^3-1}" converges as well


28.

"\\frac{2}{1^p}+\\frac{3}{2^p}+\\frac{4}{3^p}+...=\\sum^{\\infin}_{n=1}\\frac{n+1}{n^p}"


"u_n=\\frac{n+1}{n^p},v_n=\\frac{1}{n^{p-1}}"


"\\displaystyle \\lim_{n\\to \\infin}(u_n\/v_n)=1\\neq 0"


then:

since series "\\sum^{\\infin}_{n=1}\\frac{1}{n^{p-1}}" diverges if p ≤ 2 and converges if p > 2,


same thing for "\\sum^{\\infin}_{n=1}\\frac{n+1}{n^p}" : diverges if p ≤ 2 and converges if p > 2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog