Test the convergence of ∑︁∞
n=1
[︂
n!2n
2
n
]︂
.
Ans: ∑︁un Converges
25. Test the convergence of ∑︁∞
n=1
[︂
n
3 + 1
2
n + 1]︂
.
Ans: ∑︁un Converges
Hint: Use vn as
1
√n
.
26. Test the convergence of
1
2 · 3 · 4
+
2
3 · 4 · 5
+
3
4 · 5 · 6
+
4
5 · 6 · 7
+ · · · .
Ans: ∑︁un Converges
Hint: Use vn as
1
n2
.
27. Test the convergence of
√
2 − 1
3
3 − 1
+
√
3 − 1
4
3 − 1
+
√
4 − 1
5
3 − 1
+ · · · .
Ans: ∑︁un Converges
Hint: Use vn as
1
n
5
2
.
28. Test the convergence of
2
1
p +
3
2
p +
4
3
p + · · · .
Ans: ∑︁un Converges if p > 2 and ∑︁un Diverges if p ≤ 2
Hint: Use vn as
1
n
p−1
.
24.
"\u2211\ufe01^\u221e_{n=1}\\frac{(n!)^2}{n^{2n}}"
"\\displaystyle \\lim_{n\\to \\infin}\\frac{{n!}}{n^n}=\\displaystyle \\lim_{n\\to \\infin}\\frac{{1\\cdot2\\cdot3...(n-1)n}}{n\\cdot n...n}=0"
so,
"\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{u_n}=\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{\\frac{(n!)^2}{n^{2n}}}=0<1"
so, series converges
25.
"\u2211\ufe01^\u221e_{n=1}\\frac{n^3+1}{2^n+1}"
using L'Hopital's rule:
"\\displaystyle \\lim_{n\\to \\infin}\\frac{n^3+1}{2^{n}+1}=\\displaystyle \\lim_{n\\to \\infin}\\frac{6}{2^nln^32}=0"
then:
"\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{u_n}=\\displaystyle \\lim_{n\\to \\infin}\\sqrt[n]{\\frac{n^3+1}{2^{n}+1}}=0<1"
so, series converges
26.
"\\frac{1}{2 \u00b7 3 \u00b7 4}+\\frac{2}{3 \u00b7 4 \u00b7 5}+\\frac{3}{4 \u00b7 5 \u00b7 6}+\\frac{4}{5 \u00b7 6 \u00b7 7}+...=\\sum_{n=1}^{\\infin}\\frac{n}{(n+1)(n+2)(n+3)}"
since "\\frac{n}{(n+1)(n+2)(n+3)}<\\frac{1}{n^2}" and series "\\sum \\frac{1}{n^2}" converges, then series
"\\sum_{n=1}^{\\infin}\\frac{n}{(n+1)(n+2)(n+3)}" converges as well
27.
"\\frac{\\sqrt 2-1}{3^3-1}+\\frac{\\sqrt 3-1}{4^3-1}+\\frac{\\sqrt 4-1}{5^3-1}+...=\\sum^{\\infin}_{n=1}\\frac{\\sqrt n-1}{(n+1)^3-1}"
"u_n=\\frac{\\sqrt n-1}{(n+1)^3-1},v_n=\\frac{1}{n^{5\/2}}"
"\\displaystyle \\lim_{n\\to \\infin}(u_n\/v_n)=1\\neq 0"
we know that series "\\sum^{\\infin}_{n=1}\\frac{1}{n^{5\/2}}" converges, so series "\\sum^{\\infin}_{n=1}\\frac{\\sqrt n-1}{(n+1)^3-1}" converges as well
28.
"\\frac{2}{1^p}+\\frac{3}{2^p}+\\frac{4}{3^p}+...=\\sum^{\\infin}_{n=1}\\frac{n+1}{n^p}"
"u_n=\\frac{n+1}{n^p},v_n=\\frac{1}{n^{p-1}}"
"\\displaystyle \\lim_{n\\to \\infin}(u_n\/v_n)=1\\neq 0"
then:
since series "\\sum^{\\infin}_{n=1}\\frac{1}{n^{p-1}}" diverges if p ≤ 2 and converges if p > 2,
same thing for "\\sum^{\\infin}_{n=1}\\frac{n+1}{n^p}" : diverges if p ≤ 2 and converges if p > 2
Comments
Leave a comment