Answer to Question #300353 in Calculus for Dhanush

Question #300353

Show that Sigma infinity n=1 ( -1)^n+1 5÷7n+2 is conditionally convergent

1
Expert's answer
2022-02-22T16:18:37-0500

Solution:

"\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}\\frac{5}{7n+2}\n\\\\=5\\cdot \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}\\frac{1}{7n+2}\n\\\\=5\\cdot \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^n\\left(-1\\right)\\frac{1}{7n+2}\n\\\\=5\\left(-\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^n\\frac{1}{7n+2}\\right)\n\\\\=5\\left(-\\mathrm{converges}\\right)\\ \\ [\\text{using Alternating series test}]\n\\\\=\\mathrm{converges}"

Here, "a_n=\\dfrac1{7n+1}" which is positive and decreasing sequence.

Also, "\\lim_{n\\rightarrow \\infty}a_n=\\lim_{n\\rightarrow \\infty}\\dfrac1{7n+1}=0"

Thus, by alternating series test "\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n}a_n\\ or\\ \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}a_n" converge.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog