Answer to Question #348840 in Calculus for Shane

Question #348840

Tell whether if the following piecewise function is a continuous at a given point or not. (SHOW THE SOLUTION).



1. at x = 4



x + 1 if x < 4


(x - 4)² + 3 if x ≥ 4



2. at x = 0



1/x if x ≤ -1


x² - 2 if x > -1



3. at x = 5



x² - 3 if x ≥ 5


4x + 2 if x < 5




1
Expert's answer
2022-06-08T13:27:10-0400

1.


"\\lim\\limits_{x\\to4^-}f(x)=\\lim\\limits_{x\\to4^-}(x+1)=4+1=5"

"\\lim\\limits_{x\\to4^+}f(x)=\\lim\\limits_{x\\to4^+}((x-4)^2+3)=(4-4)^2+3=3"

"\\lim\\limits_{x\\to4^-}f(x)=5\\not=3=\\lim\\limits_{x\\to4^+}f(x)"

"\\lim\\limits_{x\\to4}f(x)=\\text{does not exist}"

The function "f(x)" is not continuous at "x=4."

The function "f(x)" has a jump discontinuity at "x=4."


2.


"\\lim\\limits_{x\\to0}f(x)=\\lim\\limits_{x\\to0}(x^2-1)=(0)^2-1=-1=f(0)"

The function "f(x)" is continuous at "x=0."


3.


"\\lim\\limits_{x\\to5^-}f(x)=\\lim\\limits_{x\\to5^-}(4x+2)=4(5)+12=22"

"\\lim\\limits_{x\\to5^+}f(x)=\\lim\\limits_{x\\to5^+}(x^2-3)=(5)^2-3=22"

"\\lim\\limits_{x\\to5^-}f(x)=22=\\lim\\limits_{x\\to5^+}f(x)=>\\lim\\limits_{x\\to5}f(x)=22"

"f(5)=(5)^2-3=22=\\lim\\limits_{x\\to5}f(x)"

The function "f(x)" is continuous at "x=5."



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS