Answer to Question #349961 in Calculus for zalea

Question #349961

Evaluate the following integrals. (Show your solution)


"1) \\intop 2x\u221ax" "dx"

2) "\\intop" "2\/\u221ax\u00b3" "dx"


1
Expert's answer
2022-06-14T00:05:35-0400

We'll use the next basic integration formula:

"\\int x^ndx=\\frac{x^{n+1}}{n+1}+C."


So we have:

1)

"\\int 2x\\sqrt{x}dx=\\int2x^1x^{\\frac{1}{2}}dx=\\int2x^{\\frac{3}{2}}dx="


"=2\\frac{x^{\\frac{3}{2}+1}}{\\frac{3}{2}+1}+C=2\\frac{x^{\\frac{5}{2}}}{\\frac{5}{2}}+C=\\frac{4}{5}x^{{\\frac{5}{2}}}+C="


"=\\frac{4}{5}x^{2+\\frac{1}{2}}+C=\\frac{4}{5}x^2x^{\\frac{1}{2}}+C=\\frac{4}{5}x^2\\sqrt{x}+C."


2) "\\int\\frac{2}{\\sqrt{x^3}}dx=\\int\\frac{2}{x^{\\frac{3}{2}}}dx=\\int2x^{-\\frac{3}{2}}dx="


"=2\\frac{x^{-\\frac{3}{2}+1}}{-\\frac{3}{2}+1}+C=2\\frac{x^{-\\frac{1}{2}}}{-\\frac{1}{2}}+C=-\\frac{4}{x^{\\frac{1}{2}}}+C=-\\frac{4}{\\sqrt{x}}+C."


Answer: 1) "\\int 2x\\sqrt{x}dx=\\frac{4}{5}x^2\\sqrt{x}+C,"


2) "\\int\\frac{2}{\\sqrt{x^3}}dx=-\\frac{4}{\\sqrt{x}}+C."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS