Answer to Question #206417 in Linear Algebra for Elissa

Question #206417

Find the determinant and inverse of:

  a)

3 0

5 9


  b)  

−3 7 9

1 1 3

4 9 3


1
Expert's answer
2021-06-14T16:18:10-0400

a)


"\\det A=\\begin{vmatrix}\n 3 & 0 \\\\\n 5 & 9\n\\end{vmatrix}=3(9)-0(5)=27\\not=0"

"=>A^{-1}\\ exists"


"A^{-1}=\\dfrac{1}{27}\\begin{pmatrix}\n 9 & 0 \\\\\n -5 & 3\n\\end{pmatrix}=\\begin{pmatrix}\n 1\/3 & 0 \\\\\n -5\/27 & 1\/9\n\\end{pmatrix}"

b)


"\\det A=\\begin{vmatrix}\n -3 & 7 & 9 \\\\\n 1 & 1 & 3 \\\\\n 4 & 9 & 3 \\\\\n\\end{vmatrix}=-3\\begin{vmatrix}\n 1 & 3 \\\\\n 9 & 3\n\\end{vmatrix}-7\\begin{vmatrix}\n 1 & 3\\\\\n 4 & 3\n\\end{vmatrix}+9\\begin{vmatrix}\n 1 & 1 \\\\\n 4 & 9\n\\end{vmatrix}"


"=-3(3-27)-7(3-12)+9(9-4)=180\\not=0"

"=>A^{-1}\\ exists"


To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be the inverse matrix.


"\\begin{pmatrix}\n -3 & 7 & 9 & & 1 & 0 & 0 \\\\\n 1 & 1 & 3 & & 0 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_1=-R_1\/3"


"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 1 & 1 & 3 & & 0 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_2=R_2-R_1"


"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 10\/3 & 6 & & 1\/3 & 1 & 0 \\\\\n 4 & 9 & 3 & & 0 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_3=R_3-4R_1"


"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 10\/3 & 6 & & 1\/3 & 1 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_2=(3\/10)R_2"


"\\begin{pmatrix}\n 1 & -7\/3 & -3 & & -1\/3 & 0 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_1=R_1+(7\/3)R_2"


"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 55\/3 & 15 & & 4\/3 & 0 & 1 \\\\\n\\end{pmatrix}"

"R_3=R_3-(55\/3)R_2"


"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & -18 & & -1\/2 & -11\/2 & 1 \\\\\n\\end{pmatrix}"

"R_3=-R_3\/18"


"\\begin{pmatrix}\n 1 & 0 & 6\/5 & & -1\/10 & 7\/10 & 0 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}"

"R_1=R_1-(6\/5)R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & -2\/15 & 1\/3 & 1\/15 \\\\\n 0 & 1 & 9\/5 & & 1\/10 & 3\/10 & 0 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}"

"R_2=R_2-(9\/5)R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & -2\/15 & 1\/3 & 1\/15 \\\\\n 0 & 1 & 0 & & 1\/20 & -1\/4 & 1\/10 \\\\\n 0 & 0 & 1 & & 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}"

On the left is the identity matrix. On the right is the inverse matrix.


"A^{-1}=\\begin{pmatrix}\n -2\/15 & 1\/3 & 1\/15 \\\\\n 1\/20 & -1\/4 & 1\/10 \\\\\n 1\/36 & 11\/36 & -1\/18 \\\\\n\\end{pmatrix}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog