Answer to Question #122780 in Math for Felix Coleman

Question #122780
1. If a1 = λ1i + µ1j + ν1k, a2 = λ2i + µ2j + ν2k, a3 = λ3i + µ3j + ν3k, where {i,j, k} is a standard basis, show
that
(a)
a1 · (a2 × a3) =






λ1 µ1 ν1
λ2 µ2 ν2
λ3 µ3 ν3






.
(b) Deduce that a2 · (a3 × a1), due to cyclic rotation of the vectors in a triple scalar product leaves the
value of the product unchanged.
(c) If r(t) = (3t
2 − 4)i + t
3
j + (t + 3)k, where {i,j, k} is a constant standard basis, find r˙ and ¨r. Deduce
the time derivative of r × r˙.
1
Expert's answer
2020-06-17T19:39:42-0400
"a_1\\cdot a_2\\times a_3=\\begin{vmatrix}\n \\lambda_1& \\mu_1 & \\nu_1 \\\\\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n\\lambda_3& \\mu_3 & \\nu_3\n\\end{vmatrix}"


"a_2\\times a_3=\\begin{vmatrix}\n i& j & k \\\\\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n\\lambda_3& \\mu_3 & \\nu_3\n\\end{vmatrix}="

"=i\\begin{vmatrix}\n \\mu_2 & \\nu_2 \\\\\n \\mu_3 & \\nu_3\n\\end{vmatrix}-j\\begin{vmatrix}\n \\lambda_2 & \\nu_2 \\\\\n \\lambda_3 & \\nu_3\n\\end{vmatrix}+k\\begin{vmatrix}\n \\lambda_2 & \\mu_2 \\\\\n \\lambda_3 & \\mu_3\n\\end{vmatrix}"


"a_1\\cdot a_2\\times a_3=\\lambda_1\\begin{vmatrix}\n \\mu_2 & \\nu_2 \\\\\n \\mu_3 & \\nu_3\n\\end{vmatrix}-\\mu_1\\begin{vmatrix}\n \\lambda_2 & \\nu_2 \\\\\n \\lambda_3 & \\nu_3\n\\end{vmatrix}+\\nu_1\\begin{vmatrix}\n \\lambda_2 & \\mu_2 \\\\\n \\lambda_3 & \\mu_3\n\\end{vmatrix}="

"=\\begin{vmatrix}\n \\lambda_1& \\mu_1 & \\nu_1 \\\\\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n\\lambda_3& \\mu_3 & \\nu_3\n\\end{vmatrix}"

(b)

Switching Property:

The interchange of any two rows (or columns) of the determinant changes its sign.


"a_2\\cdot a_3\\times a_1=\\begin{vmatrix}\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n \\lambda_3& \\mu_3 & \\nu_3 \\\\\n\\lambda_1& \\mu_1 & \\nu_1\n\\end{vmatrix}="

"=-\\begin{vmatrix}\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n \\lambda_1& \\mu_1 & \\nu_1 \\\\\n\\lambda_3& \\mu_3 & \\nu_3\n\\end{vmatrix}=\\begin{vmatrix}\n \\lambda_1& \\mu_1 & \\nu_1 \\\\\n \\lambda_2& \\mu_2 & \\nu_2 \\\\\n\\lambda_3& \\mu_3 & \\nu_3\n\\end{vmatrix}="


"=a_1\\cdot a_2\\times a_3"

(c)


"r(t)=(3t^2-4)i+t^3j+(t+3)k"

"r'(t)=6ti+3t^2j+k"

"r''(t)=6i+6tj+0k"

"r\\times r'=\\begin{vmatrix}\n i& j & k \\\\\n 3t^2-4& t^3 & t+2 \\\\\n6t& 3t^2 & 1\n\\end{vmatrix}="

"=i\\begin{vmatrix}\n t^3 & t+2\\\\\n 3t^2 & 1\n\\end{vmatrix}-j\\begin{vmatrix}\n 3t^2-4 & t+2 \\\\\n 6t & 1\n\\end{vmatrix}+k\\begin{vmatrix}\n 3t^2-4 & t^3\\\\\n 6t & 3t^2\n\\end{vmatrix}="

"=(t^3-3t^3-6t^2)i-(3t^2-4-6t^2-12t)j+"

"+(9t^4-12t^2-6t^4)k="

"=(-2t^3-6t^2)+(3t^2+12t+4)j+(3t^4-12t^2)k"


"(r\\times r')'=(-6t^2-12t)i+(6t+12)j+(12t^3-24t)k"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog