Answer to Question #168969 in Math for EUGINE HAWEZA

Question #168969

a.      Express the roots of (−14+3i)−2/5 complex number in polar form. 


1
Expert's answer
2021-03-08T19:17:18-0500
"(-14+3i)^{-2}=\\dfrac{187}{42025}+\\dfrac{84}{42025}i"

"r=\\dfrac{1}{205}, \\theta=\\tan^{-1}(\\dfrac{84}{187})"

According to the De Moivre's Formula, all "n"-th roots of a complex number "r(\\cos \\theta+i\\sin \\theta)" are given by "\\sqrt[n]{r}\\bigg(\\cos (\\dfrac{\\theta+2\\pi k}{n})+i\\sin (\\dfrac{\\theta+2\\pi k}{n})\\bigg),"

"k=0, 1, 2, ... n-1"

"k=0:"


"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})}{5}))"

"k=1:"

"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+2\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+2\\pi}{5}))"




"k=2:"

"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+4\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+4\\pi}{5}))"



"k=3:"

"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+6\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+6\\pi}{5}))"



"k=4:"

"\\dfrac{1}{\\sqrt[5]{205}}(\\cos (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+8\\pi}{5})+i\\sin (\\dfrac{\\tan^{-1}(\\dfrac{84}{187})+8\\pi}{5}))"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog