determine the point of discontinuity of the function f and the nature of discontinuity at each points
f(x)= { -x^2, when x<=0
{ 4-5x, when 0<x<=1
{ 3x-4x^2 when 1<x<=2
{-12x+2x when x>2
and check whether function f is derivable at x=1
"\\lim\\limits_{x\\to0^+}f(x)=\\lim\\limits_{x\\to0^+}(4-5x)=4"
"\\lim\\limits_{x\\to0^-}f(x)=0\\not=4=\\lim\\limits_{x\\to0^+}f(x)"
"\\lim\\limits_{x\\to0}f(x)" does not exist.
The function "f(x)" is discontinuous at "x=0" and has a jump discontinuity at "x=0."
"\\lim\\limits_{x\\to1^+}f(x)=\\lim\\limits_{x\\to1^+}(3x-4x^2)=-1"
"\\lim\\limits_{x\\to1^-}f(x)=-1=\\lim\\limits_{x\\to1^+}f(x)"
"\\lim\\limits_{x\\to1}f(x)=-1".
The function "f(x)" is continuous at "x=1."
"\\lim\\limits_{x\\to2^+}f(x)=\\lim\\limits_{x\\to2^+}(-12x+2x)=-20"
"\\lim\\limits_{x\\to2^-}f(x)=-10\\not=-20=\\lim\\limits_{x\\to2^+}f(x)"
"\\lim\\limits_{x\\to2}f(x)" does not exist.
The function "f(x)" is discontinuous at "x=2" and has a jump discontinuity at "x=2."
"=\\lim\\limits_{h\\to0^-}\\dfrac{-5h}{h}=-5"
"\\lim\\limits_{h\\to0^+}\\dfrac{f(1+h)-f(1)}{h}"
"=\\lim\\limits_{h\\to0^+}\\dfrac{3(1+h)-4(1+h)^2-(-1)}{h}"
"=\\lim\\limits_{h\\to0^+}\\dfrac{3+3h-4-8h-4h^2+1}{h}"
"=\\lim\\limits_{h\\to0^+}(-5-4h)=-5"
"=\\lim\\limits_{h\\to0^+}\\dfrac{f(1+h)-f(1)}{h}"
Then
The function "f(x)" is derivable at "x=1," and
Comments
Leave a comment