Consider the upward motion of a particle under gravity with a velocity of projection uo and resistance mkv2. Show that the velocity V at the time t and distance x from point lf projection are related as
2gx/Vt2 = ln[(uo2+Vt2)/(V2+Vt2)], where k=g/Vt2
Using Newton’s 2nd law gives:
"\\dfrac{dV}{dt}=-kV^2-g"
"\\dfrac{dV}{dt}=\\dfrac{dV}{dx}\\cdot\\dfrac{dx}{dt}=V\\dfrac{dV}{dx}"
"V\\dfrac{dV}{dx}=-kV^2-g"
"\\dfrac{VdV}{kV^2+g}=-dx"
"\\int \\dfrac{VdV}{kV^2+g}=-\\int dx"
"\\int \\dfrac{VdV}{kV^2+g}"
"z=kV^2+g, dz=2kVdV"
"VdV=\\dfrac{1}{2}dz"
"2kx=-\\ln(kV^2+g)+kC_2"
"t=0: 0=-\\ln(ku_0^2+g)+kC_2"
"=>kC_2=\\ln(ku_0^2+g)"
"2kx=\\ln(\\dfrac{ku_0^2+g}{kV^2+g})"
If "k=\\dfrac{g}{V_t^2}"
Comments
Leave a comment