(a) The angle at which this occurs for violet light θ = angular separation
For the 1st minimum n = 1
"sin\u03b8 = \\frac{\u03bb_v}{w}"
"\u03b8 = sin^{-1}(\\frac{\u03bb_v}{w})"
"\u03b8 = sin^{-1}(\\frac{410 \\times 10^{-9}}{1.5 \\times 10^{-6}}) \\\\\n\n= sin^{-1}(0.2733) \\\\\n\n= 15.86 \\; degrees"
(b) For the red light:
"dsin\u03b8 = n\u03bb_r \\\\\n\nn = 1 \\\\\n\nsin\u03b8 = \\frac{\u03bb_r}{w} \\\\\n\n\u03b8 = sin^{-1}(\\frac{\u03bb_r}{w}) \\\\\n\n\u03b8 = sin^{-1}(\\frac{730 \\times 10^{-9}}{1.5 \\times 10^{-6}}) \\\\\n\n= sin^{-1}(0.4866) \\\\\n\n= 29.11 \\; degrees"
Comments
Leave a comment