For an ideal I of a commutative ring R, define
√I {x belongs to R |x^n belongs to I |for some n ∈N}. Show that
i) √I is an ideal of R.
ii) I ⊆ √I.
iii) I ≠ √I in some cases.
b) Is R/I×R/J=R×R/I×J ,for any two ideals I and J of a ring R ? Give reasons for your
answer
1) Let "x, y\\in\\sqrt{I}" . There exist "n,m\\in \\mathbb{N}" such that "x^n,y^m\\in I". Then, "(x+y)^{n+m}=\\sum\\limits_{k=0}^{n+m}\\binom{n+m}{k}x^ky^{n+m-k}=y^m\\sum\\limits_{k=0}^{n}\\binom{n+m}{k}x^ky^{n-k}+x^n\\sum\\limits_{k=n+1}^{n+m}\\binom{n+m}{k}x^{k-n}y^{n+m-k}\\in I"
Hence "(x+y)\\in \\sqrt{I}"
For any "a\\in R\\ (ax)^n=a^nx^n\\in I" , hence "ax\\in \\sqrt{I}"
Therefore, "\\sqrt{I}" is an ideal.
2) "\\forall x\\in I\\,\\forall n\\in\\mathbb{N}x\\, x^n\\in I" , hence "x\\in \\sqrt{I}" and "I\\subset \\sqrt{I}" .
3) Let "R=\\mathbb{Z}", "I=(4)", "\\sqrt{I}=\\{x\\in \\mathbb{Z}: \\exists n\\in\\mathbb{N}\\ 4|x^n\\}=\\{x\\in \\mathbb{Z}: 2|x\\}=(2)". So, "I\\ne\\sqrt{I}" .
4) "R\/I\\times R\/J=(R\\times R)\/(I\\times J)"
Indeed, "I\\times J" is an ideal in "R\\times R":
"\\forall i_1,i_2\\in I \\forall j_1,j_2\\in J\\ i_1+i_2\\in I, j_1+j_2\\in J", hence "(i_1+i_2,j_1+j_2)\\in I\\times J"
"\\forall (i,j)\\in I\\times J\\ \\forall (a,b)\\in R\\times R\\ ai\\in I,\\ bj\\in J,\\ (ai,bj)\\in I\\times J"
Define "f:R\/I\\times R\/J\\to(R\\times R)\/(I\\times J)" by the formula "f(x+I,y+J)=(x,y)+(I\\times J)"
This definition is correct, since if "x_1-x_2=i\\in I" and "y_1-y_2=j\\in J" then
"f(x_1,y_1)=f(x_2+i,y_2+j)=(x_2+i,y_2+j)+(I\\times J)=(x_2,y_2)+(I\\times J)=f(x_2,y_2)"
Since "I,J" are ideals in "R" , and "I\\times J" is an ideal in "R\\times R" , we have
"f(x_1+x_2+I,y_1+y_2+J)=(x_1,y_1)+(x_2,y_2)+(I\\times J)=f(x_1+I,y_1+J) + f(x_2+I,y_2+J)"
"f(ax+I,by+J)=(ax, by)+(I\\times J)=(a,b)f(x,y)"
therefore, f is homomorphism.
f is surjective, since for any class "(x,y)+I\\times J\\in R\\times R\/(I\\times J)" we have "(x,y)+I\\times J=f(x+I,y+J)"
f is injective, since if "f(x+I,y+J)=(0,0)+(I\\times J)", then "x\\in I" and "y\\in J" and "(x+I,y+J)=(0+I,0+J)" is zero in "f:R\/I\\times R\/J" .
Therefore, f is an isomorphism.
Comments
Leave a comment