give an example of a non-trivial homorphiem or explain why none exists.  φ : Z12 → Z4
"\\phi : Z_{12}\\rightarrow Z_{4}\\\\ \n\\\\\n\\\\\n\n 1 \\rightarrow \\phi(1)\\\\\n a \\rightarrow \\phi(a)=a \\phi(1)"
It is sufficient to find the value of "\\phi(1)".
Now "o(\\phi(1))" divides 4 and 12. [ o"(\\phi(1))|o(1)" and o(1)=12]
Therefore "o(\\phi(1))=1\\hspace{0.5em} \\text{or} \\hspace{0.5em} 2 \\hspace{0.5em}\\text{or} \\hspace{0.5em} 4"
Now when "o(\\phi(1))=1 \\Rightarrow \\phi(1)=1" ,
when "o(\\phi(1))=2 \\Rightarrow \\phi(1)=2" ,
when "o(\\phi(1))=4 \\Rightarrow \\phi(1)=3"
Therefore the possible homomorphisms are "a \\rightarrow a" , "a\\rightarrow 2a,a\\rightarrow 3a" .
So the nontrivial homomorphisms are "a \\rightarrow 2a" and "a\\rightarrow 3a"
Comments
Leave a comment