Check if matrix A=
1 a b
0 1 c
0 0 1
Where a,b,c∈R
is an abelian group with respect to matrix multiplication.
Let us check whether the set "A=\\Big\\{ \\begin{pmatrix}1 & a & b\\\\ 0 & 1 & c\\\\ 0 & 0 & 1\\end{pmatrix}:a,b,c\\in\\mathbb R\\Big\\}" is an Abelian group with respect to matrix multiplication. It is sufficiently to prove that "A" is a subgroup of the general linear group "GL_3(\\mathbb R)."
Let "\\begin{pmatrix}1 & a_1 & b_1\\\\ 0 & 1 & c_1\\\\ 0 & 0 & 1\\end{pmatrix}, \\begin{pmatrix}1 & a_2 & b_2\\\\ 0 & 1 & c_2\\\\ 0 & 0 & 1\\end{pmatrix}\\in A."
Taking into account that
"\\begin{pmatrix}1 & a_1 & b_1\\\\ 0 & 1 & c_1\\\\ 0 & 0 & 1\\end{pmatrix}\\cdot \\begin{pmatrix}1 & a_2 & b_2\\\\ 0 & 1 & c_2\\\\ 0 & 0 & 1\\end{pmatrix}=\n\\begin{pmatrix}1 & a_2+a_1 & b_2+a_1c_2+b_1\\\\ 0 & 1 & c_2+c_1\\\\ 0 & 0 & 1\\end{pmatrix}\\in A" and
"\\begin{pmatrix}1 & a & b\\\\ 0 & 1 & c\\\\ 0 & 0 & 1\\end{pmatrix}^{-1}=\n\\begin{pmatrix}1 & -a & ac-b\\\\ 0 & 1 & -c\\\\ 0 & 0 & 1\\end{pmatrix}\\in A," we conclude that "A" is a subgroup of "GL_3(\\mathbb R),"
that is "A" is a group with respect to matrix multiplication.
Since "\\begin{pmatrix}1 & 1 & 0\\\\ 0 & 1 & 0\\\\ 0 & 0 & 1\\end{pmatrix}\\cdot \\begin{pmatrix}1 & 0 & 0\\\\ 0 & 1 & 1\\\\ 0 & 0 & 1\\end{pmatrix}=\n\\begin{pmatrix}1 & 1 & 1\\\\ 0 & 1 & 1\\\\ 0 & 0 & 1\\end{pmatrix}" and
"\\begin{pmatrix}1 & 0 & 0\\\\ 0 & 1 & 1\\\\ 0 & 0 & 1\\end{pmatrix}\\cdot \\begin{pmatrix}1 & 1 & 0\\\\ 0 & 1 & 0\\\\ 0 & 0 & 1\\end{pmatrix}=\n\\begin{pmatrix}1 & 1 & 0\\\\ 0 & 1 & 1\\\\ 0 & 0 & 1\\end{pmatrix}," we conclude that the group "A" is not Abelian.
Comments
Leave a comment