3. Let L: R₂ → R₂ be the linear transformation defined by L ([u¹, u₂]) = [u1, 0]
a. Is [0, 2] in Ker L?
b. Is [2,2] in Ker L?
C. Is [3,0] in range L?
d. Is [ 3,2] in range L?
e. Find Ker L.
£. Find Range L.
"KerL={v\u2208\u211d\u00b2: L(v)=(0,0)}"
(a) "L(0,2)=(0,0)"
Hence, "(0,2)\u2208KerL"
(b) "L(2,2)=(2,0)\u2260(0,0)"
Hence, "(2,2)\u2209KerL"
"RngL={w\u2208\u211d\u00b2: L(v)=W, v\u2208\u211d\u00b2}"
(c) "L(3,b)=(3,0)" for any "b\u2208\u211d"
Hence, "(3,0)\u2208RngL"
(d) There exist no "(a,b)\u2208\u211d\u00b2" such that "L(a,b)=(3,2)"
Hence, "(3,2)\u2209RngL"
(e) "L(a,b)=(a,0)=(0,0)"
"=> a=0"
Hence, "KerL={(0,b)\u2208\u211d\u00b2: b\u2208\u211d}"
(f) "L(a,b)=(a,0)=(x,y)"
"=> x=a, y=0"
"RngL={(a,0)\u2208\u211d\u00b2: y\u2208\u211d}"
Comments
Leave a comment