Find nth derivative of e^ax cos² xsinx
"y=e^{ax}\\cos^2x \\sin x\n\\\\\\Rightarrow y=e^{ax}(\\dfrac{\\cos2x+1}2) \\sin x\n\\\\\\Rightarrow y=\\frac12e^{ax}\\cos2x\\sin x+\\frac12e^{ax}\\sin x"
Using "\\cos x=\\dfrac{e^{ix}+e^{-ix}}2, \\sin x=\\dfrac{e^{ix}-e^{-ix}}2"
"y=\\frac12e^{ax}(\\dfrac{e^{2ix}+e^{-2ix}}2)(\\dfrac{e^{ix}-e^{-ix}}2)+\\frac12e^{ax}(\\dfrac{e^{ix}-e^{-ix}}2)\n\\\\=\\frac18e^{ax}(e^{3ix}-e^{ix}+e^{-ix}-e^{-3ix})+\\frac14({e^{(a+i)x}-e^{(a-i)x}})\n\\\\=\\frac18(e^{(a+3i)x}-e^{(a+i)x}+e^{(a+i)x}-e^{(a-3i)x})+\\frac14({e^{(a+i)x}-e^{(a-i)x}})\n\\\\=\\frac18({e^{x\\left(a+3i\\right)}-e^{x\\left(a-3i\\right)}})+\\frac{1}{4}\\left(e^{x\\left(a+i\\right)}-e^{x\\left(a-i\\right)}\\right)"
Now, we know that
if "y=e^{ax}"
then, "y_n=a^ne^{ax}" .
So, "y=\\frac18({e^{x\\left(a+3i\\right)}-e^{x\\left(a-3i\\right)}})+\\frac{1}{4}\\left(e^{x\\left(a+i\\right)}-e^{x\\left(a-i\\right)}\\right)"
"y_n=\\frac18({(a+3i)^ne^{x\\left(a+3i\\right)}-(a-3i)^ne^{x\\left(a-3i\\right)}})+\\frac{1}{4}\\left((a+i)^ne^{x\\left(a+i\\right)}-(a-i)^ne^{x\\left(a-i\\right)}\\right)"
Comments
Leave a comment