Evaluate the following limits, if they exist, where βπ₯β is the greatest integer function.
(a)lim β2π₯β/π₯
π₯β0
(b) lim π₯ β1/π₯β
π₯β0
"a:\\\\x\\in \\left( -\\frac{1}{2},0 \\right) :\\frac{\\left[ 2x \\right]}{x}=\\frac{-1}{x}\\\\\\underset{x\\rightarrow 0-}{\\lim}\\frac{\\left[ 2x \\right]}{x}=-\\infty \\\\x\\in \\left( 0,\\frac{1}{2} \\right) :\\frac{\\left[ 2x \\right]}{x}=0\\\\\\underset{x\\rightarrow 0-}{\\lim}\\frac{\\left[ 2x \\right]}{x}=0\\\\The\\,\\,\\lim it\\,\\,doesn\u0091t\\,\\,exist\\\\b:\\\\x\\cdot \\left( \\frac{1}{x}-1 \\right) <x\\left[ \\frac{1}{x} \\right] \\leqslant x\\cdot \\frac{1}{x}\\\\\\underset{x\\rightarrow 0}{\\lim}x\\left( \\frac{1}{x}-1 \\right) =1,\\underset{x\\rightarrow 0}{\\lim}x\\cdot \\frac{1}{x}=1\\Rightarrow \\\\\\Rightarrow \\underset{x\\rightarrow 0}{\\lim}x\\left[ \\frac{1}{x} \\right] =1"
Comments
Leave a comment