find the centroid and boundaries y=x^2 and the line y=x
"S=\\int_0^1{\\int_{x^2}^x{dydx}}=\\int_0^1{\\left( x-x^2 \\right) dx}=\\frac{1}{2}-\\frac{1}{3}=\\frac{1}{6}\\\\c_x=\\frac{1}{S}\\int_0^1{\\int_{x^2}^x{xdydx}}=6\\int_0^1{x\\left( x-x^2 \\right) dx}=6\\left( \\frac{1}{3}-\\frac{1}{4} \\right) =\\frac{1}{2}\\\\c_y=\\frac{1}{S}\\int_0^1{\\int_{x^2}^x{ydydx}}=6\\int_0^1{\\left( \\frac{x^2-x^4}{2} \\right)}=3\\left( \\frac{1}{3}-\\frac{1}{5} \\right) =\\frac{2}{5}\\\\\\left( \\frac{1}{2},\\frac{2}{5} \\right) -centroid"
Comments
Leave a comment