Find the asymptotes of the curve π₯2π¦ β π₯π¦2 + π₯π¦ + π¦2 + π₯ β π¦ = 0.
"x^2y-xy^2+xy+y^2+x-y=0\\\\Horyzontal\\,\\,asymptotes:\\\\x=\\frac{y^2-y-1\\pm \\sqrt{\\left( y^2-y-1 \\right) ^2-4y\\left( y^2-y \\right)}}{y}\\\\y\\rightarrow C,x\\rightarrow \\infty \\\\C=0\\\\\\underset{y\\rightarrow 0}{\\lim}\\frac{y^2-y-1-\\sqrt{\\left( y^2-y-1 \\right) ^2-4y\\left( y^2-y \\right)}}{y}=\\left[ \\frac{-2}{0} \\right] =\\infty \\\\y=0-horyzontal\\,\\,asymptote\\\\Vertical\\,\\,asymptotes:\\\\\\left( 1-x \\right) y^2+\\left( x^2+x-1 \\right) y+x=0\\\\y=\\frac{-x^2-x+1\\pm \\sqrt{\\left( x^2+x-1 \\right) ^2-4x\\left( 1-x \\right)}}{1-x}\\\\x\\rightarrow C,y\\rightarrow \\infty \\\\C=1\\\\\\underset{x\\rightarrow 1}{\\lim}\\frac{-x^2-x+1+\\sqrt{\\left( x^2+x-1 \\right) ^2-4x\\left( 1-x \\right)}}{1-x}=\\left[ \\frac{2}{0} \\right] =\\infty \\\\x=1-vertical\\,\\,asymptote"
Comments
Leave a comment