Find the limit of the following functions using the tabular method.
𝑥→−3
𝑥→−1
1.
Let "f(x) = \\frac{x^2+x-6x+3}{ x+3}\\\\"
"\\def\\arraystretch{1.5}\n \\begin{array}{|c|c|c|c|c|c|c|c|c|}\\hline\n x & -3.2 & -3.19 &-3.09 &-3.01 &-2.99 &-2.9 &-2.89&-2.8 \\\\ \\hline\n f(x) &-146.2 & -153.29 &-311.09&-2711.01&2689.01&259.1&234.56&124.2\\\\\n \\hline\n\\end{array}"
The limit of the function as x approaches -1 does not exist, since the value of x from the left approaches smaller negative value and the the value from the right approaches large positive value.
2.
Let "f(x) = \\frac{x^2-2x+3}{x+1}"
"\\def\\arraystretch{1.5}\n \\begin{array}{|c|c|c|c|c|c|c|c|c|}\\hline\n x & -1.2 & -1.11&-1.1 &-1.01 &-0.99 &-0.9 &-0.89&-0.8 \\\\ \\hline\n f(x) &-34.2& -58.66 &-64.1&-604.01&596.01&56.1&50.65&26.2\\\\\n \\hline\n\\end{array}"
The limit of the function as x approaches -1 does not exist, since the value of x from the left approaches smaller negative value and the the value from the right approaches large positive value.
Comments
Leave a comment