Consider the curve y= f(x) for the function f(x)=e^2x-x^2
a)identify the domain of f
b)Find x,y-intercept
c)find the first and second derivatives
d)the critical points of the function f
e)where is the curve decreasing and increasing
F)find the point of inflection if any and discuss the concavity of the curve
G)Identify any asymptotes
"f\\left( x \\right) =e^{2x}-x^2\\\\a: Dom\\left( f \\right) =\\mathbb{R} , because\\,\\,f\\,\\,is\\,\\,defined\\,\\,for\\,\\,all\\,\\,x\\\\b: f\\left( 0 \\right) =1-0=1\\Rightarrow y-intercept\\,\\,is\\,\\,y=1\\\\f\\left( x \\right) =0\\Rightarrow e^{2x}-x^2=0\\Rightarrow x\\approx -0.5671-this\\,\\,is\\,\\,x-intercept\\\\c:f'\\left( x \\right) =2e^{2x}-2x\\\\f''\\left( x \\right) =4e^{2x}-2\\\\d:\\\\f'\\left( x \\right) =0\\Rightarrow 2e^{2x}-2x=0\\Rightarrow e^{2x}=x\\\\No\\,\\,solutions\\,\\,for\\,\\,x\\leqslant 0, \\sin ce\\,\\,e^{2x}>0\\\\No\\,\\,solutions\\,\\,for\\,\\,x>0, \\sin ce\\,\\,e^{2x}\\geqslant 1+2x>x\\\\No\\,\\,critical\\,\\,points\\\\e: \\\\We\\,\\,have\\,\\,e^{2x}>x\\,\\,for\\,\\,all\\,\\,x\\,\\,from\\,\\,d\\\\Hence\\,\\,the\\,\\,curve\\,\\,is\\,\\,incre\\mathrm{a}\\sin g\\,\\,on\\,\\,\\mathbb{R} \\\\f:\\\\f''\\left( x \\right) =0\\Rightarrow 4e^{2x}-2=0\\Rightarrow x=\\frac{1}{2}\\ln \\frac{1}{2}=-\\frac{\\ln 2}{2}\\\\\\left( -\\infty ,-\\frac{\\ln 2}{2} \\right) :f''<0-concave\\,\\,down\\\\\\left( -\\frac{\\ln 2}{2},+\\infty \\right) :f''>0-concave\\,\\,up\\\\g:\\\\No\\,\\,vertical\\,\\,asymptotes\\,\\,because\\,\\,f\\,\\,in\\,\\,continuous\\,\\,on\\,\\,\\mathbb{R} \\\\\\underset{x\\rightarrow +\\infty}{\\lim}\\frac{f\\left( x \\right)}{x}=\\underset{x\\rightarrow +\\infty}{\\lim}\\frac{e^{2x}-x^2}{x}=\\left[ \\frac{\\infty}{\\infty} \\right] =\\underset{x\\rightarrow +\\infty}{\\lim}\\frac{2e^{2x}-2x}{1}=+\\infty \\\\\\underset{x\\rightarrow -\\infty}{\\lim}\\frac{f\\left( x \\right)}{x}=\\underset{x\\rightarrow -\\infty}{\\lim}\\frac{e^{2x}-x^2}{x}=\\left[ \\frac{-\\infty}{-\\infty} \\right] =\\underset{x\\rightarrow -\\infty}{\\lim}\\frac{2e^{2x}-2x}{1}=+\\infty \\\\No\\,\\,asymptotes"
Comments
Leave a comment