When the price of a certain commodity is p dollars per unit, the manufacturer is willing to supply x thousand units, where π₯ 2 β 2π₯βπ β π 3 = 31 How fast is the supply changing the price when the price is $ 9 per unit and increasing at the rate of 20 cents per weekΒ
"x^2-2x\\sqrt{p}-p^3=31\\\\\\frac{dp}{dt}=0.2\\\\p=9\\Rightarrow x^2-6x-760=0\\Rightarrow \\left[ x\\geqslant 0 \\right] \\Rightarrow x=3+\\sqrt{769}\\\\2x\\frac{dx}{dt}-2\\frac{dx}{dt}\\sqrt{p}-\\frac{x}{\\sqrt{p}}\\frac{dp}{dt}-3p^2\\frac{dp}{dt}=0\\\\\\frac{dx}{dt}=\\frac{\\left( \\frac{x}{\\sqrt{p}}+3p^2 \\right)}{2\\left( x-\\sqrt{p} \\right)}\\frac{dp}{dt}=\\frac{\\left( \\frac{3+\\sqrt{769}}{\\sqrt{9}}+3\\cdot 9^2 \\right)}{2\\left( 3+\\sqrt{769}-\\sqrt{9} \\right)}\\cdot 0.2=0.91322\\,\\,thousands\\,\\,units\\,\\,per\\,\\,week"
Comments
Leave a comment