Graph the following function:
y= ex / x2
Ensure that you include the following properties:
Assimptotes x=0, y=0
It is no x,y- interceptes.
"Domain: \n(\n\u2212\n\u221e\n,\n0\n)\n\u222a\n(\n0\n,\n\u221e\n)\n,\n{\nx\n|\nx\n\u2260\n0\n}"
"Range: \n(\n0\n,\n\u221e\n)\n,\n{\ny\n|\ny\n>\n0\n}"
"y'=\\frac{e^x(x-2)}{x^3}"
"\\frac{e^x(x-2)}{x^3}=0" , x=2, "y=e^2\/4"
"y"=-\\frac{4xe^x-x^2e^x-6e^6}{x^4}"
At x=2 y">0, so
(2,e2/4) -local minimum
No inflection points, because "y" \\not=0"
"Increasing\\ on: \n(\n\u2212\n\u221e\n,\n0\n)\n,\n(\n2\n,\n\u221e\n)"
"Decreasing\\ on: \n(\n0\n,\n2\n)"
"Concave\\ up\\ on \n(\n\u2212\n\u221e\n,\n0\n)\n since \nf\n''\n(\nx\n)\n is\\ positive"
"Concave\\ up\\ on \n(\n0\n,\n\u221e\n)\n since \nf\n''\n(\nx\n)\n is\\ positive"
Comments
Leave a comment