What is the Jacobian matrix J(r, θ) for the polar coordinate transformation, given that x=rcosθ and y=rsinθ.
Select one:
A. cosθ-rsinθ-sinθrcosθ
B. -rcosθsinθsinθ-rcosθ
C. cosθ-rsinθsinθ-rcosθ
D. cosθrsinθsinθrcosθ
"J=\\left[ \\begin{matrix}\t\\frac{\\partial}{\\partial r}\\left( r\\cos \\theta \\right)&\t\t\\frac{\\partial}{\\partial \\theta}\\left( r\\cos \\theta \\right)\\\\\t\\frac{\\partial}{\\partial r}\\left( r\\sin \\theta \\right)&\t\t\\frac{\\partial}{\\partial \\theta}\\left( r\\sin \\theta \\right)\\\\\\end{matrix} \\right] =\\left[ \\begin{matrix}\t\\cos \\theta&\t\t-r\\sin \\theta\\\\\t\\sin \\theta&\t\tr\\cos \\theta\\\\\\end{matrix} \\right] \\\\"
Only one '-' sign, no correct variant
Comments
Leave a comment