find the surface area of the object obtained by rotating y=4+3x^2, 1<=x<=2 about the y axis
"y=4+3x^2" , "1\\leq x\\leq2"
Express x as function of y:
"x=\\frac{1}{\\sqrt3}\\sqrt{y-4}" , "7\\leq y\\leq 16"
The surface area can be calculated using the formula:
"S=2\\pi\\int_7^{16} x(y)\\sqrt{1+(x'(y))^2}dy"
"x'=\\frac{1}{2\\sqrt3}\\frac{1}{\\sqrt{y-4}}"
"S=2\\pi\\int_7^{16} \\frac{1}{\\sqrt3}\\sqrt{y-4}\\sqrt{1+\\frac{1}{12}\\frac{1}{y-4}}dy=""2\\pi\\int_7^{16} \\frac{1}{\\sqrt3}\\sqrt{y-4}\\sqrt{1+\\frac{1}{12}\\frac{1}{y-4}}dy=""\\frac{1}{3}\\pi\\int_7^{16} \\sqrt{12y-47}dy=\\frac{1}{3}\\pi\\cdot\\frac{2}{3\\cdot12}(12y-47)^{3\/2}|_7^{16}=""\\frac{1}{3}\\pi\\cdot\\frac{2}{3\\cdot12}(12y-47)^{3\/2}|_7^{16}=\\frac{\\pi}{54}(145^{3\/2}-37^{3\/2})""\\approx88.49"
Comments
Leave a comment