derivative y = arctan4(3x5)
Remind that the derivative of the composition of functions"f(g(x))" is: "f'_x(g(x))=f'_g(g(x))g'(x)". Thus, we get: "y'=\\frac{4(\\arctan^3(3x^5))(3x^5)'}{1+9x^{10}}=\\frac{60x^4\\arctan^3(3x^5)}{1+9x^{10}}."
The answer is: "y'=\\frac{60x^4\\arctan^3(3x^5)}{1+9x^{10}}"
Comments
Leave a comment