A function is defined on R such that f(x) = (C^2)x when xβ€1 and 5Cx-6 when x>1 . Determine the values of C so that f becomes continues on R
If f(x) is continuous at x=1 then
"\\displaystyle\\lim_{x\\to1}f(x)=f(1)"; "\\displaystyle\\lim_{x\\to1^-}f(x)=f(1)"; "\\displaystyle\\lim_{x\\to1^+}f(x)=f(1)".
"f(x) = \\begin{cases}\n C^2x &\\text{if } x\\le1 \\\\\n 5Cx-6 &\\text{if } x>1\n\\end{cases}"
"\\displaystyle\\lim_{x\\to1^-}f(x)=\\displaystyle\\lim_{x\\to1}C^2x=C^2"
"\\displaystyle\\lim_{x\\to1^+}f(x)=\\displaystyle\\lim_{x\\to1}(5Cx-6)=5C-6"
To make "f(x)" continuous at "x=1" we should find "C" for which
"C^2=5C-6"
"C^2-5C+6=0"
"C=2" ; "C=3" .
Answer: "C=2" or "C=3".
Comments
Leave a comment