Solution.
"a_n=-3a_{n-1}-3a_{n-2}-a_{n-3}, a_0=5, a_1=-9, a_2=15;"
Let "a_n=r^3, a_{n-1}=r^2, a_{n-2}=r, a_{n-3}=1,"then
"r^3=-3r^2-3r-1;"
"r^3+3r^2+3r+1=0";
"(r+1)^3=0;"
"r+1=0;"
"r=-1;"
"a_n=\\alpha_1r^n+\\alpha_2nr^n+ \u2026 +\\alpha_kn^k-1r^n;"
So r=-1, then "a_n=\\alpha_1(-1)^n+\\alpha_2n(-1)^n+\\alpha_3n^2(-1)^n;"
Substitute the value and find "\\alpha_1,\\alpha_2,\\alpha_3:"
"5=\\alpha_1(-1)^0, \\alpha_1=5;"
"-9=\\alpha_1(-1)^1+\\alpha_2(-1)^1+\\alpha_3(-1)^1=-\\alpha_1-\\alpha_2-\\alpha_3;"
"15=\\alpha_1(-1)^2+\\alpha_2\\sdot2\\sdot(-1)^2+\\alpha_3\\sdot4\\sdot(-1)^2=\\alpha_1+2\\alpha_2+4\\alpha_3;"
"-9=-5-\\alpha_2-\\alpha_3;" | "\\sdot2"
"15=5+2\\alpha_2+4\\alpha_3;"
"-18=-10-2\\alpha_2-2\\alpha_3;"
"15=5+2\\alpha_2+4\\alpha_3;"
____________________________
"-3=-5+2\\alpha_3;"
"2=2\\alpha_3;"
"\\alpha_3=1;"
"15=5+2\\alpha_2+4;"
"6=2\\alpha_2;"
"\\alpha_2=3;"
"a_n=5(-1)^n+3n(-1)^n+1n^2(-1)^n=(-1)^n(5+3n+n^2);"
Answer: "a_n=(-1)^n(5+3n+n^2)."
Comments
Leave a comment