Let "a_m=m^{2k}, m\\in \\Z^+" and "a_n=n^{2k}, n\\in \\Z^+" be two numbers in this sequence.
If "m" and "n" are not consistent numbers the difference "n^{2k}-m^{2k}" may be either odd or even.
The difference "4^{2k}-2^{2k}" is even.
The difference "4^{2k}-3^{2k}" is odd.
If "m" and "n" are not consistent numbers
Suppose "n=m+1, m\\in \\Z^+"
If "m" is even, then "n=m+1" is odd:
"\\begin{cases}\n m &\\text{is even } \\\\\n n &\\text{is odd } \n\\end{cases}=>\\begin{cases}\n m^k &\\text{is even } \\\\\n n^k &\\text{is odd } \n\\end{cases}=>"
"=>\\begin{cases}\n n^k-m^k &\\text{is odd } \\\\\n n^k+m^k &\\text{is odd } \n\\end{cases}=>(n^k-m^k)(n^k+m^k) \\text{is odd}"
If "m" is odd, then "n=m+1" is even:
"\\begin{cases}\n m &\\text{is odd } \\\\\n n &\\text{is even } \n\\end{cases}=>\\begin{cases}\n m^k &\\text{is odd } \\\\\n n^k &\\text{is even } \n\\end{cases}=>"
"=>\\begin{cases}\n n^k-m^k &\\text{is odd } \\\\\n n^k+m^k &\\text{is odd } \n\\end{cases}=>(n^k-m^k)(n^k+m^k) \\text{is odd}"
Therefore the difference between the consistent numbers in this sequence is odd for all k ∈ N.
Comments
Leave a comment