a)
"z_1=1-2i, z_2=1+2i"
"z^3+z+10=(z-(1-2i))(z-(1+2i))(Az+B)"
"z^3+z+10=((z-1)^2+4)(Az+B)"
"z^3+z+10=(z^2-2z+5)(Az+B)"
"z^3+z+10=Az^3+Bz^2-2Az^2-2Bz+5Az+5B"
"z^3+z+10=Az^3+(B-2A)z^2+(5A-2B)z+5B"
"A=1, B=2"
"Az+B=0"
"z+2=0"
Answer:
"z_3=-2"
b)
"z_1=3+i, z_2=3-i"
"z^3 \u2212 3z^2 \u2212 8z + 30=(z-(3+i))(z-(3-i))(Az+B)"
"z^3 \u2212 3z^2 \u2212 8z + 30=((z-3)^2+1)(Az+B)"
"z^3 \u2212 3z^2 \u2212 8z + 30=(z^2-6z+10)(Az+B)"
"z^3 \u2212 3z^2 \u2212 8z + 30=Az^3+Bz^2-6Az^2-6Bz+10Az+10B"
"z^3 \u2212 3z^2 \u2212 8z + 30=Az^3+(B-6A)z^2+(10A-6B)z+10B"
"A=1, B=3"
"Az+B=0"
"z+3=0"
Answer:
"z_3=-3"
c)
"z_1=1+i, z_2=1-i"
"z^3 \u2212 2z + k=(z-(1+i))(z-(1-i))(Az+B)"
"z^3 \u2212 2z + k=((z-1)^2+1)(Az+B)"
"z^3 \u2212 2z + k=(z^2-2z+2)(Az+B)"
"z^3 \u2212 2z + k=Az^3+Bz^2-2Az^2-2Bz+2Az+2B"
"z^3 \u2212 2z + k=Az^3+(B-2A)z^2+(2A-2B)z+2B"
"A=1, B=2"
"2B=k"
Answer:
"z_3=-2, k=4"
d)
"z_1=2-3i. z_2=2+3i"
"z^3 +pz^2 +qz +13=(z-(2-3i))(z-(2+3i))(Az+B)"
"z^3 +pz^2 +qz +13=((z-2)^2+9)(Az+B)"
"z^3 +pz^2 +qz +13=(z^2-4z+13)(Az+B)"
"z^3 +pz^2 +qz +13=Az^3+Bz^2-4Az^2-4Bz+13Az+13B"
"A=1, B=1"
Answer:
"z_3=-1"
"p=B-4A=1-4=-3"
"q=13A-4B=13-4=9"
e)
"i^4 + i^3 + i \u22121=1-i+i-1=0"
"z_1=i, z_2=-i"
"z^4 + z^3 + z \u2212 1=(z-i)(z+i)(Az^2+Bz+C)"
"z^4 + z^3 + z \u2212 1=(z^2+1)(Az^2+Bz+C)"
"z^4 + z^3 + z \u2212 1=Az^4+Az^2+Bz^3+Bz+Cz^2+C"
"A=1, C=-1, B=1"
"z^2+z-1=0"
Answer:
"z_3=\\frac {-1-\\sqrt{1+4}}{2}=\\frac {-1-\\sqrt{5}}{2}"
"z_4=\\frac {-1+\\sqrt{5}}{2}"
f)
"(-1+i)^4 \u22122(-1+i)^3 \u2212(-1+i)^2 +2(-1+i) +10="
"=(1-2i-1)^2-2(1-2i-1)(-1+i)-(1-2i-1)-2+2i+10="
"=-4+4i(-1+i)+4i+8=4-4i-4+4i=0"
"z_1=-1+i, z_2=-1-i"
"z^4 \u22122z^3 \u2212z^2 +2z +10=(z-(-1+i))(z-(-1-i))(Az^2+Bz+C)"
"z^4 \u22122z^3 \u2212z^2 +2z +10=((z+1)^2+1)(Az^2+Bz+C)"
"z^4 \u22122z^3 \u2212z^2 +2z +10=(z^2+2z+2)(Az^2+Bz+C)"
"z^4 \u22122z^3 \u2212z^2 +2z +10=Az^4+Bz^3+Cz^2+2Az^3+2Bz^2+2Cz+2Az^2+2Bz+2C"
"A=1, C=5"
"2C+2B=2"
"C+B=1"
"B=-C=-5"
"z^2-5z+5=0"
Answer:
"z_3=\\frac {5-\\sqrt{25-20}}{2}=\\frac {5-\\sqrt{5}}{2}"
"z_4=\\frac {5+\\sqrt{5}}{2}"
g)
The Rational Root Theorem states that if a polynomial zeroes for a rational number P/Q then P is a factor of the Trailing Constant and Q is a factor of the Leading Coefficient.
In this case, the Leading Coefficient is 6 and the Trailing Constant is 52.
The factor(s) are:
of the Leading Coefficient : 1,2 ,3 ,6
of the Trailing Constant : 1 ,2 ,4 ,13 ,26 ,52
After the test we have:
"z_1=\\frac {1}{2}, z_2=\\frac {4}{3}"
Then:
"\\frac {6z^4 \u2212 47z^3 + 148z^2 \u2212 167z + 52}{(2z-1)(3z-4)}=z^2-6z+13"
"z^2-6z+13=0"
"z_3=\\frac {6-\\sqrt{36-52}}{2}=3-2i"
"z_4=3+2i"
Comments
Leave a comment