"-1+i=\\sqrt{2}(-\\frac{\\sqrt{2}}2+i\\frac{\\sqrt{2}}2)=\\sqrt{2}(cos\\frac{3\\pi}4+i \\,sin\\frac{3\\pi}4)" .
Applying de Moivre's formula we get:
"(-1+i)^{16}= 2^8(cos(12\\pi)+i \\,sin(12\\pi))=256" ,
"(-1+i)^{6}= 2^3(cos\\frac{9\\pi}2+i \\,sin\\frac{9\\pi}2)=8i" ,
"\\frac{1}{(-1+i)^{6}}=-\\frac{1}8i" .
Comments
Leave a comment